Lagrangian Models

نویسندگان

چکیده

Abstract Lagrangian models use calculus to solve multi-variable non-linear constrained optimization of problems and for identifying the marginal changes (‘shadow prices’) optimal solutions in constraint bounds. This is especially useful when constraints represent resource limitations.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chaotic Lagrangian models for turbulent relative dispersion.

A deterministic multiscale dynamical system is introduced and discussed as a prototype model for relative dispersion in stationary, homogeneous, and isotropic turbulence. Unlike stochastic diffusion models, here trajectory transport and mixing properties are entirely controlled by Lagrangian chaos. The anomalous "sweeping effect," a known drawback common to kinematic simulations, is removed thr...

متن کامل

Effective chiral Lagrangian from dual resonance models.

Parameters of the effective chiral lagrangian (EChL) of orders O(p) and O(p6) are extracted from low–energy behaviour of dual resonance models for ππ and πK scattering amplitudes. Dual resonance models are considered to be good candidates for the resonance spectrum and for hadronic scattering amplitudes in the large Nc limit of QCD. We discuss dual resonance models in the presence of spontaneou...

متن کامل

Lagrangian-based methods for finding MAP solutions for MRF models

Finding maximum a posteriori (MAP) solutions from noisy images based on a prior Markov random field (MRF) model is a huge computational task. In this paper, we transform the computational problem into an integer linear programming (ILP) problem. We explore the use of Lagrange relaxation (LR) methods for solving the MAP problem. In particular, three different algorithms based on LR are presented...

متن کامل

forecasting systems . INPUT DATA REqUIREMENTS FOR LAGRANGIAN TRAJECTORy MODELS

Texas A&M University, College Station, Texas; Lin—Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah; StohL—Norwegian Institute for Air Research, Kjeller, Norway; DraxLer—NOAA/Air Resources Laboratory, College Park, Maryland; KonopKa—Forschungszentrum Julich, Julich, Germany; anDrewS—NOAA/Earth System Research Laboratory, Boulder, Colorado; Brunner—Laboratory for Air P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International series in management science/operations research

سال: 2022

ISSN: ['0884-8289', '2214-7934']

DOI: https://doi.org/10.1007/978-3-030-93986-1_11